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Abstract 

Solar sailing is a propellantless propulsion method that exploits solar radiation pressure to generate thrust. In recent 
years, several solar sails have been launched into Earth-bound orbit to demonstrate this technology’s potential. Because 
planetary radiation pressure can reach magnitudes comparable to that of solar radiation pressure in proximity of the 
Earth, it cannot automatically be neglected in near-Earth solar-sail mission design studies. Nevertheless, its effect on 
the solar-sail dynamics has been investigated only to a very limited, first-order extent, and every study considered an 
“ideal” – i.e., perfectly reflecting – sail model. Although employing the ideal sail model proves useful for preliminary 
orbital analyses, its limited fidelity prevents more in-depth research into the near-Earth solar-sail dynamics and trajec-
tory optimization. In light of this, this paper provides a new planetary radiation pressure acceleration model for optical 
solar sails. This model forms an extension of the “spherical” planetary radiation pressure acceleration model for ideal 
solar sails devised by Carzana et al. in Reference [1]. In the current paper, the underlying assumptions and full deriva-
tion of the newly devised optical model are presented. Subsequently, the accuracy of the optical model is analyzed 
through a comparison with the ideal model, using NASA’s upcoming ACS3 mission as reference scenario. 
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1. Introduction 

Solar sailing is a propulsion method that uses solar 
radiation as main source of thrust [2]. Due to its propel-
lantless nature and mission-enabling potential for a wide 
variety of applications [3, 4], solar sailing has drawn in-
creasingly more attention in the scientific community 
over the last decades. As a result, a number of technol-
ogy demonstration missions have been launched, both 
in the interplanetary and near-Earth environments. 
Among the most recent missions are, for example, 
NASA’s NEA Scout and Gama’s Gama Alpha mis-
sions. Even more missions are scheduled for the near 
future, such as NASA’s Advanced Composite Solar Sail 
System (ACS3) and Gama’s Beta missions [5]. Most of 
these sailcraft have flown (or are planned to fly) in low-
Earth orbit [6], where several perturbations can affect 
the solar-sail dynamics, including gravitational pertur-
bations, eclipses, atmospheric drag, and planetary radi-
ation pressure (PRP). While a number of studies have 
been conducted on the dynamics and trajectory optimi-
zation of drag-perturbed solar sails [7, 8, 9], the effects 
of PRP on the sailcraft dynamics and control have been 
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investigated only to a very limited, first-order extent. 
Studying the effects of PRP on the solar-sail dynamics 
is relevant because, for some orbital scenarios, PRP can 
achieve a non-trivial intensity, with magnitudes of up to 
20% of the solar radiation pressure (SRP) [1]. However, 
determining the PRP acceleration accurately presents 
several difficulties, mainly related to the models used to 
represent the Earth's radiation and the optical properties 
of the solar sail. For this reason, early studies on this 
topic considered simplistic models. These studies char-
acterized the PRP acceleration in proximity of the Earth 
[10] and investigated the optimization of PRP-perturbed 
sailcraft trajectories [11]. In these studies the sail is as-
sumed to be ideal – that is, it is perfectly reflecting – 
while the Earth is approximated as a uniform bright 
disk, as per the finite-disk radiation model devised by 
McInnes [2]. As an extension of McInnes' finite-disk 
model, the so-called “spherical” radiation model has 
been developed in the work by Carzana [1], where a 
thorough investigation of the achievable blackbody and 
albedo radiation pressure accelerations experienced by 
sailcraft in close proximity of the Earth has been con-
ducted. The analytical model derived in Ref. [1] consid-
ers the Earth as a spherical, uniform radiation source, 
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whose brightness depends on the sailcraft altitude, lati-
tude, and Sun-Earth-sailcraft angle. Although the spher-
ical radiation model derived in Ref. [1] allows for more 
accurate results than the finite-disk model, it still as-
sumes the sail to behave as an ideal, perfect reflector. 
Generally, the use of the ideal sail model leads to useful 
results for first-order analyses. For more in-depth anal-
yses, the so-called optical sail model is often preferred 
[2]. This model accounts for the absorptivity, reflectiv-
ity, and emissivity properties of the sail and has been 
used extensively to model the SRP acceleration in sev-
eral works, see the overview in Ref. [12]. A similar op-
tical model for the PRP acceleration has not been found 
in available literature and, similar to the optical model 
for the SRP acceleration, would aid in increasing the fi-
delity of the solar-sail dynamics. In light of this, this pa-
per aims to bridge this gap of knowledge by providing a 
new PRP acceleration model valid for optical solar sails 
and assuming a spherical Earth radiative model. As 
such, this model forms an extension of the spherical 
PRP acceleration model for ideal solar sails devised by 
Carzana in Ref. [1].   

Fig. 1. Solar-sail pitch angle,  , normal direction, ˆ n , and 

SRP transversal direction, ˆ t . 

2. Dynamical Model 

The equations of motion of a solar sail in Earth-
bound orbit are expressed in an inertial Earth-centered 
reference frame, I(x, y, z). In this frame, the x-axis 
points towards the vernal equinox, the z-axis is perpen-
dicular to the equatorial plane and points towards the 
north pole, and the y-axis completes the right-handed 
frame. Within this frame, the equations of motion of a 
flat-shaped solar sail under the influence of Earth’s cen-
tral gravity, SRP and PRP can be expressed in vectorial 
form as:   

3 SRP PRP r 

 
  r r a a (1) 

where   398600.4415 km3 s -2 is the Earth’s gravita-

tional parameter [13], r = [x, y, z]T is the sailcraft posi-
tion vector, r = ||r||, SRP a is the SRP acceleration, and 

PRP a is the PRP acceleration. These accelerations will 

be described in more detail in the following sections.   

2.1. Solar Radiation Pressure Acceleration 

The SRP acceleration is defined using the optical sail 
model, which accounts for the absorption, reflection, 
and emission properties of the solar sail. When this 
model is employed, the SRP acceleration is given by [2]:   

, ,SRP SRP n SRP t  a a a (2) 

where ,SRP n a and ,SRP t a are the normal and transversal 

components of the SRP acceleration, respectively. The 
former is directed along the sail normal direction with 
no component pointing towards the Sun, ˆ n , while the 
latter points in the SRP transversal direction, ˆ t , tangen-
tial to the sail plane, see Fig. 1. The SRP transversal di-
rection can be defined from ˆ n and the direction of sun-
light, ˆ s , as follows: 
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where   [0, π/2] represents the solar-sail pitch angle 
measured between ˆ s and n̂ , see again Fig. 1, and   
[0,1] is the shadow factor, which accounts for the effect 
of eclipses and ranges from 0 (no sunlight reaches the 
sail) to 1 (sail completely illuminated). In this paper, 
eclipses are modeled with a conical shadow model sim-
ilar to the one presented in Ref. [14, 15], with the only 
difference that 0   both when in umbra and penum-
bra. The solar-sail characteristic acceleration, c a , rep-

resents the maximum SRP acceleration (achieved for 
0   ) at a distance of 1 AU from the Sun and is de-

fined as [2]:   

2
c a 

c 
 

 
(6) 

where 1367    W/m2 is the solar flux at Earth [13], 

299792.458 c  km/s is the speed of light in vacuum 
[16], and  is the sailcraft mass-to-sail area ratio. Fi-
nally, the optical properties of the sail are specified 
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through the parameters , , , r s B and  , which represent 

the reflectivity, specular reflection coefficient, non-
Lambertian reflection coefficient, and emissivity of the 
sail, respectively, with the subscript “f” indicating that 
the optical coefficient refers to the sail front side and the 
subscript “b” is used to refer to the sail back side. It 
should be noted that Eqs.   (4) and (5) are based on the 
assumption that only the sail front side is exposed to 
sunlight and, conversely, the sail back side is never illu-
minated. Because of this, the normal and transversal 
components of the SRP acceleration do not depend on 
the reflectivity and specular reflection coefficient of the 
sail back side, b r and b s . As explained in the next sec-

tion, this assumption does not hold for the PRP acceler-
ation, as planetary radiation can illuminate both sides of 
the sail, thus requiring the knowledge of br and b s . 

2.2. Planetary Radiation Pressure Acceleration 

To determine the PRP acceleration exerted on a solar 
sail, knowledge of the amount of planetary radiation re-
ceived by the sail, its corresponding flux and radiation 
pressure is required. The mathematical derivation to de-
termine these quantities is provided in Ref. [1] and is 
reported here for the sake of completeness. 

If an elementary piece of Earth’s surface dA is con-
sidered, see Fig. 2a, the amount of power irradiated in a 

generic direction ˆ l and enclosed within an infinitesimal 
solid angle d is represented by the second differential 

2 d P as [17]: 
2 cos( )d P I d dA  (7) 

where I represents the planetary radiation intensity 
(across the entire electromagnetic spectrum) along the 

normal direction to dA , N̂ , and [0, π/2] is the an-

gle between N̂ and ˆ l , see again Fig. 2a. Assuming the 
Earth's surface to be a Lambertian scatterer, the radia-
tion intensity can be expressed as [18]: 

S 
I  

 
(8) 

where S is the planetary radiation power flux (i.e., the   
emitted radiation power per unit area) at the surface el-
ement, dA . When only the radiation received by the so-

lar sail is considered, d represents the solid angle 
subtended by an infinitesimal piece of illuminated sail 
surface, sail dA . In this case, d is defined as [19]: 

2 

cos( )sail dA 
d

l


  (9) 

where  [0, π/2] is the angle between ˆ l and the sail 
normal direction pointing away from dA , ˆ

illn , and l is 

the magnitude of the vector l pointing from dA to 

sail dA , see Figs. 2a and 2b. Making use of Eqs. (8) and 

(9), Eq. (7) can be rewritten as: 

2
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Fig. 2. Geometry of the problem to determine the PRP accel-
eration exerted on a solar sail. 

Since this paper considers a flat-shaped solar sail whose 
dimensions are significantly smaller than l ,  and l 
can be assumed to be constant across the entire sail sur 
face. This assumption allows to easily integrate Eq. (10) 
with respect to sail dA over the entire sail surface, sail A . 

Performing the integration yields the radiation power 
dP received by the entire sail due to the radiation emit-
ted by dA : 

2 

cos( ) cos( ) 
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(11) 

The power flux at the sail’s location due to the radiation 
emitted by dA , sail dS , is then found as: 
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so that the corresponding radiation pressure d  is 
given by [2]: 
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Equation (13) allows to determine the acceleration ex-
erted on the sail due to the radiation emitted by the sur-
face element dA , PRP da . Indeed, by taking into account 

the optical properties of the sail, PRP da can be defined 

in a similar fashion to the SRP acceleration as: 

, ,PRP PRP n PRP d d d   a a a (14) 

where the normal and transversal components of the in-
finitesimal PRP acceleration, ,PRP n da and ,PRP d  a , re-

spectively, are given by: 
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In the above equations, the subscript “ill” is used to re-
fer to the optical coefficients of the sail side illuminated 
by the radiation emitted by the surface element dA , 

while ˆ  represents the PRP transversal direction rela-

tive to dA , which can be found from Eq. (3) by substi-

tuting ˆ  for ˆ t and ˆ l for ŝ , see Fig. 2a.   
Although the decomposition of PRP da into its normal 

and transversal components is similar to that performed 
in Eq. (2) for the SRP acceleration, it should be noted 
that a major difference exists, which is due to the differ-
ent definitions of the SRP transversal direction, ˆ , t and 

PRP transversal direction relative to dA , ˆ  . Indeed, 

while ˆ t is uniquely defined for a given sail attitude, ˆ 
is not, as its direction depends on the specific surface 
element dA considered and it can point anywhere 

within the sail plane. When this dependency of ˆ  on 

dA is taken into account, Eq. (14) can be integrated 
over the entire visible surface of the Earth as seen from 

the sailcraft, * A , hence yielding the total PRP accelera-
tion exerted on the solar sail, i.e.:   

 , , 

* * 

PRP PRP PRP n PRP 

A A

d d d    a a a a (17) 

The solution to the PRP acceleration integral in Eq. 
(17) depends on the Earth-sail geometrical configura-
tion and, most importantly, on how the planetary flux, 
S , varies across the visible surface * A . Because the 
planetary flux varies geographically following a com-
plex pattern, no general closed-form analytical solution 
to the acceleration integral exists. To circumvent this 
problem, in the literature the PRP acceleration integral 
is usually solved numerically by discretizing the visible 

surface * A and making use of maps providing the geo-
graphical distribution of the Earth’s blackbody radiation 
flux and albedo coefficient. Such numerical methods en-
able a high accuracy which, however, comes at the cost 
of a large computational effort. Therefore, in this paper 
an analytical approach is pursued instead, which as-
sumes a constant planetary flux S over the entire visible 

surface * A . To compute this value of S , the previously 
mentioned maps are used to approximate the Earth’s 
blackbody radiation flux and albedo coefficient as si-
nusoidal functions of latitude. Then, by performing a 
surface average, a constant, analytical value of S is 
found. For more information on the definition of the sur-
face-averaged planetary radiation flux, the reader is re-
ferred to Ref. [1].   

Considering a constant planetary flux allows to ana-
lytically solve the PRP acceleration integral in Eq. (17), 
yielding to: 
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where ˆ d is the PRP transversal direction relative to the 
Earth displayed in Fig. 2b, found from Eq. (3) by sub-

stituting d̂ for ˆ t and the radial direction, r̂ , for ŝ . 
, FNS G , FND G and FT G represent the normal specular, 

normal diffuse, and transversal geometrical factors, re-
spectively, while the subscripts “in” and “out” indicate   
if the optical coefficients and geometrical factors refer 
to the inward or outward side of the sail with respect to 
the Earth. This differentiation is required because for 
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particular sail orientations planetary radiation can illu-
minate both the inward and outward sides of the sail, 
therefore contributing to PRP a . The geometrical factors   

are all defined in the range [0,1] and they correlate the 
Earth-sail geometrical configuration to the different 
components of the PRP acceleration. By indicating the 

regions of the surface * A that are visible from the in-
ward and outward sides of the sail by * 

inA and * 
out A , the 

geometrical factors can be defined as follows: 
2 
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where the symbol “◇” has been used as placeholder to 
indicate either the subscript “in” or “out”. 

The solutions to the surface integrals on the right-
hand side of Eq. (19)-(21) depend on the geometrical 
configuration of the sail with respect to the Earth, which 
is uniquely defined by the orbital radius, r , planetary 
cone angle (PCA),   [0, π/2], and maximum view 

angle, [0, π/2], see Fig. 2b. The PCA is defined as 

the angle between ˆout n and ˆ r while  represents the 

angle between the direction pointing to the Earth’s tan-
gent as seen from the sailcraft and ˆ -r . The full analyti-
cal solution to the geometrical factor integrals is pre-
sented in the following subsections. 

2.2.1. Normal Specular Geometrical Factor 

Depending on the sail orientation with respect to the 
Earth, two possible configurations can be identified: 

a) If  + ≤ π/2, the incoming radiation from the 

visible surface * A illuminates only the inward side 
of the sail. In this case, the outward geometrical fac-
tor is ,FNS out G = 0, while the inward geometrical fac-

tor, ,FNS in G , is given by Eq. (22), where / H R r  

is the adimensional inverse orbital radius, R = 
6378.1363 km is the Earth radius [13], and: 
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b) If  + > π/2, both sail sides are illuminated and 

the inward and outward geometrical factors are 
given by Eqs. (23) and (24). 

2.2.2. Normal Diffuse Geometrical Factor 

The normal diffuse geometrical factors correspond to 
the view factors of the sail sides with respect to the 
Earth. Their expressions were found by F.G. Cunning-
ham in Ref. [19] and are reported hereinafter for com-
pleteness: 

a) If  +  ≤ π/2, ,FND in G is given by Eq. (25) and 

,FND out G = 0. 

b) If  + > π/2, ,FND in G and ,FND out G are given by 

Eqs. (26) and (27), respectively. 
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2.2.3. Transversal Geometrical Factor 

Similar to the other geometrical factors, the definition 
of the transversal geometrical factor depends on 
whether both sides of the sail receive planetary radia-
tion: 

a) If  +  ≤ π/2, ,FT in G is given by Eq. (28) and 

,FT out G = 0. 

b) If  + > π/2, ,FT in G and ,FT out G are given by Eqs. 

(29) and (30), respectively. 

3. Accuracy Analysis 

In this section, a parametric analysis is presented 
which aims to validate the optical PRP acceleration 
model presented in the previous section and quantify its 
accuracy compared to a high-fidelity numerical model. 
To achieve this, a wide variety of PRP perturbed, Earth-
bound orbits have been propagated considering differ-
ent models for the PRP acceleration, PRP a . These dif-

ferent models are: 

a) NRTDM model. This numerical model computes 
the PRP acceleration by approximating the acceler-
ation integral of Eq. (17) with a finite sum. This al-
gorithm is implemented in NRTDM (Near Real-
Time Density Model), a software tool developed at 
the Delft University of Technology under ESA con-
tract [20, 21]. In order to model the planetary flux 
distribution across the Earth, this model makes use 
of two monthly averaged maps (one for the black-
body radiation flux and one for the albedo coeffi-
cient) obtained from the ANGARA software pack-
age developed by Hyperschall Technologie Göttin-
gen GmbH [22]. Due to its numerical nature, this 
model allows to determine the PRP acceleration 
with a very high accuracy, although requiring a 
large computational effort. For more information 
on NRTDM, the reader is referred to [20]. 

b) Spherical PRP acceleration model for an optical so-
lar sail, see Section 2.2. The sail optical coefficients 
employed have been taken from NASA’s upcoming 
ACS3 solar-sail mission. The ACS3 sail membrane 
consists of a polymer film (polyethelene 
nepthalate) coated with an aluminum layer on the 
front side and a chromium layer on the back side 
[23]. The aluminum layer’s optical coefficients are 

 f r , fs , fB , f ={0.90, 0.74, 0.03, 0.79}, while 

the chromium layer’s optical coefficients are  br , 

bs , bB , b ={0.43, 0.23, 0.60, 0.67}2 . 

2 ACS3 solar-sail optical coefficients taken from personal communi-
cation with Andrew F. Heaton, NASA Marshall Space Flight Center, 
May 2023. 

c) Spherical PRP acceleration model for an ideal solar 
sail. This model corresponds to the spherical PRP 
acceleration model devised by Carzana in Ref. [1] 
for ideal sails. It represents a special case of the op-
tical PRP acceleration model presented in Section 
2.2, found by considering the following “ideal” op-
tical coefficients: { fr , fs , fB , f }={1, 1, 2/3, 0}. 

d) Model in which the PRP acceleration is neglected, 
i.e., PRP  0 a at any time. 

All analyses make use of the ACS3 mission orbit as 
baseline scenario, with a solar-sail characteristic accel-
eration of 0.045 c a  mm/s2 and the following vector of 

initial orbital elements defined in frame I(x, y, z): 

 0 0 0 0 0 0, , , LTAN , , 

00 : 00 AM 

00 : 30 AM 
7093.1363 km, 0, 98.2490 deg, , 0 deg, 0 deg 

11: 30 AM 

T 

T 

a e i f  

   
   

                

 

   (31) 

where a is the semi-major axis, e the eccentricity, i 
the inclination,  the argument of perigee, f the true 

anomaly, LTAN stands for Local Time of the Ascend-
ing Node, and the subscript “0” denotes the initial value 
of these variables3 . These orbital elements represent a 
circular, Sun-synchronous orbit with initial altitude 

0 0 715 h a R    km. In Eq. (31), several values of the 

LTAN are considered, spaced by 0.5 hours along the en-
tire 24-hour time span. This parameter defines the orbit 
orientation in frame I(x, y, z) and is equivalent to the 
right-ascension of the ascending node, which, in a sim-
ilar fashion, is spaced by 7.5 deg across the entire 360-
degree angular span. The parametric analysis also con-
siders 12 different simulation start times, corresponding 
to the 15th day of each month of 2023. For each initial 
orbit, the solar-sail dynamics given in Eq. (1) are prop-
agated while implementing locally optimal orbit-raising 
and inclination-changing steering laws. These steering 
laws are computed based on an algorithm similar to the 
one devised by McInnes   for ideal sails [2], though 
adapted to the optical sail model presented in Section 
2.1. It should be noted that because these steering laws 
account only for SRP in the optimization process, in the 
analyses, the PRP acceleration is considered as an un-
controlled perturbing acceleration affecting the orbit. 
For each initial orbit, each simulation start time and each 
steering law, four different propagations have been per-
formed in which the PRP acceleration is computed 
through the four models listed above. Then, the relative 
errors between the final altitude/inclination obtained by 

3 ACS3 mission data taken from personal communication with W.K. 
Wilkie, Principal Investigator of the ACS3 mission, NASA Langley 
Research Center, May 2023. 
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the NRTDM model (taken as the ground truth) and each 
of the analytical models, rel  , are computed. The pa-

rameter rel  is used as metric of the accuracy of the an-

alytical models and its definition is given by: 

, , 

, 0 

œ œ 

œ œ 

NRTDM f An f 

NRT 
r l 

DM f 
e 


 


(32) 

where 0 œ indicates the initial value of the steering law’s 

target parameter (i.e., h or i ) and , œ NRTDM f and , œ An f 

represent the final values of the target parameter found 
through the NRTDM and the analytical model under 
consideration, respectively. For each simulation, the dy-
namics have been propagated for 10 days, using 
Matlab®’s ode45 integrator with absolute and relative 
tolerances of 10-12 . 

The top plot of Fig. 3 shows the variation of the rela-
tive error with the LTAN for the orbit-raising steering 
law for all analytical models. For each model, a band is 
displayed which represents the range of relative errors 
obtained by considering simulation start times at differ-
ent months. All the error bands follow a 12-hour peri-
odic trend, approximately symmetric with respect to the 
LTAN at 12AM. This is due to the relative orientations 
of the Sun-synchronous orbits with respect to the direc-
tion of sunlight, which can be similar even for different 
LTANs and therefore yield similar errors, rel  . All 

models display small errors for an LTAN at 6AM/PM 
(corresponding to a dawn-dusk orbit), as in this case the 
PRP perturbs the orbit only to a very minor extent. On 
the other hand, when an LTAN at 12AM/PM is consid-
ered (corresponding to a noon-midnight orbit), the PRP 
acceleration is the largest and therefore the errors 
achieved, rel  , are maximal. As can be seen in the plot, 

neglecting the PRP acceleration in the dynamics yields 
large relative errors, even in the order of 12%. When 
employing the spherical ideal PRP model, these errors 
are strongly reduced, reaching   values of 5% at most. 
Due to their higher fidelity with respect to the ideal PRP 
model, the optical PRP acceleration model achieves 
even smaller errors, in the range 0.2-1.1%. In addition 
to its increased accuracy, it is worth noting that the 
width of the optical PRP acceleration model’s error 
band is smaller than the ideal model’s error band, thus 
implying also a smaller error variation with the simula-
tion start date.   

The bottom plot of Fig. 3 displays the variation of 

rel  for the inclination-changing steering law, for dif-

ferent LTAN values and PRP acceleration models. In 
this case, a 12-hour periodicity in the errors is again ob-
tained, although the error bands appear skewed and 
asymmetric, unlike the ones observed for the orbit-rais-
ing case (top plot of Fig. 3). This asymmetry is due to 
the complex, discontinuous nature of the inclination-

Fig. 3. Relative errors on the altitude increase (top) and inclination increase (bottom) of different PRP acceleration analytical models 
with respect to the NRTDM model. 
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changing steering law, for which orbits with similar ori-
entations with respect to the sunlight direction still yield 
different increases in inclination. Similar to the orbit-
raising case, all models achieve small errors for an 
LTAN around 6AM/PM, due to the small PRP acceler-
ation achieved in this orbital scenario. Conversely, the 
largest errors are achieved for an LTAN approximately 
at 3AM/PM, as the PRP perturbation is maximal. The 
bottom plot of Fig. 3 shows that if the PRP acceleration 
is not accounted for in the dynamics, very large errors 
are produced, reaching magnitudes even in the order of 
55%. When the PRP ideal acceleration model is em-
ployed, smaller errors are achieved, albeit still consider-
able: rel  reaches values up to 19.2%. On the other 

hand, significantly more limited errors are achieved 
when the PRP optical model is employed, as rel 
reaches values of at most 3.4%. When comparing the 
error bands of the PRP ideal and optical acceleration 
models, it can again be noted that the former exhibits a 
wider spread than the latter, indicating that the optical 
model achieves a smaller error variation with the simu-
lation start date. 

4. Conclusions 

This paper presented a new analytical model for plan-
etary radiation pressure (PRP) acceleration, particular 
for optical solar sails. This model forms an extension of 
the “spherical” PRP acceleration model devised by Car-
zana for ideal (i.e., perfectly reflecting) solar sails [1]. A 
parametric analysis has been performed to quantify the 
model’s accuracy compared to other PRP acceleration 
models. To this aim, the trajectory of NASA’s upcom-
ing ACS3 sailcraft has been propagated for a large set 
of initial orbital conditions, with the PRP acceleration 
either neglected or modeled through a high-fidelity nu-
merical model, the newly devised optical model, or the 
pre-existent ideal model. The results show that employ-
ing the optical model yields a substantial increase in ac-
curacy. Indeed, when an orbit-raising steering law is 
adopted, the maximum relative error in altitude increase 
of the optical model compared to the high-fidelity nu-
merical model is in the order of 1.1%, whereas the rela-
tive error of the ideal model can reach values of 5%. 
Similarly, when an inclination-changing steering law is 
adopted, the optical PRP acceleration model attains a 
relative error of at most 3.4%, while the ideal model 
reaches a maximum value of 19.2%. Ultimately, the re-
sults also show that neglecting the PRP acceleration 
from the dynamics highly affects the results, as in that 
case the maximum relative errors on the altitude and in-
clination increases are 12% and 55%, respectively. 
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